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ABSTRACT: In the article [1], we built 

anenhanced self corect circuit (ESC) model of a 

lithium-ion battery to describe the dynamic 

characteristics of the charge/discharge process 

of a lithium-ion battery(LiB), determine the 

parameters of the ESC model, and use Use a 

kalman filter to observe the state of change 

(SoC) of a LiB. In this article, we will build the 

optimal structure  controlling the SoC balance 

for LiB cells. 
Keywords: Control, Control structure, Optimal 

control, SoC balance. 

 

I. INTRODUCE 
The cell balancing problem is voltage 

balancing and SoC balancing between LiB cells 

when they are fully charged. Figure 1 depicts LiB 

cells in series, with the average SoC value being 

equal, but the SoC of each cell may not be equal 

when the SoC between different cells leads to an 

imbalance between the cells, which requires must 

perform cell balancing to bring the cells to the same 

SoC value when the LiBP is active (a set of LiBs 

consisting of many cells joined together is called a 

LiBP). 

 
Figure 1. Description of SoC changes on serial cells 

 

[2] Research has shown that, currently, 

there have been many studies offering different 

methods of performing cell balancing. Each method 

has its own advantages and disadvantages, 

depending on the application that the appropriate 

cell balancing technique can be selected. The 

performance criteria of the cell balancing system are 

expressed in aspects such as the influence on SoH, 

equalization time, efficiency, control complexity, 

etc. 

[3, 4] The article has presented the current 

cell balancing techniques that can be divided into 

two main methods: passive balancing method and 

active balancing method (active method). With 

current cell balancing techniques, there are certain 

advantages, but the methods of performing cell 

balancing problems using voltage-based algorithms 

should have limitations such as equalization time, 

efficiency as well as efficiency. as the level of 

control complexity. 

The content of this paper will present an 

active cell balancing method for serial cells based 

on SoC cells with the aim of optimizing the balancer 

operation considering the SoC constraints, voltage, 

charge/discharge current, balance current, 

temperature and capacity of the LiBP. 
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II. BUILD A BALANCE MODEL SOC 

SERIES CELLS 

Balanced model of two cells in series 
The equalization technique using a 

bidirectional Cuk circuit (a circuit using a 

bidirectional DC-DC converter) has the advantage 

of being able to transfer energy between two DC 

sources without causing or losing energy, because 

So in this paper, the author applies a bidirectional 

Cuk circuit to perform the SoC balancing function 

for two adjacent cells. Suppose there are two battery 

cells i and i + 1 in series and adjacent as shown in 

Figure 2. 

 
Figure 2. SoC balance diagram for two LiB cells 

using Cuk converter 

 

Where: Li1and Li2 are the two inductances 

of the balanced circuit, Ci is the capacitor, Qi1, 

Qi2are two switching MOSFETs, Di1, Di2are two 

MOSFET switching diodes. 

Two MOSFETs are controlled opening and 

closing by Pulse Width Modulation (PWM) width 

modulation, with a large frequency of 10Khz or 

more. This Cuk converter is designed to operate in 

discontinuous inductor conduction mode to reduce 

switching losses in MOSFET[5]. This Cuk circuit is 

also responsible for transferring energy between two 

battery cells i and i + 1 through the opening and 

closing action of the MOSFET to control the 

discharge and charge process of the capacitor Ci and 

the two inductors Li1, Li2. The switching frequency 

of the MOSFET is very high, so the Cuk circuit 

always works in transient mode.  

The operating principle of this cell 

balancing circuit is as follows [6]. 

Under normal conditions, the circuit has 

not performed the balancing operation (both 

MOSFETs are locked), the voltage across the 

capacitor is: 

𝑉𝐶𝑖 =  𝑉𝐵𝑖 + 𝑉𝐵𝑖+1
  (1) 

First of all, we consider the case that the 

Cuk circuit works in the power mode that needs to 

be transferred from cell i to cell i + 1  (𝑉𝐵𝑖 > 𝑉𝐵𝑖+1
, 

SoCi> SoCi+1). Call the PWM period given to 

MOSFET Qi1 as Tp, the pulse width (or Duty) as Di1. 

Calling the beginning of the PWM at the t0, the 

working process of the Cuk circuit takes place in 

two cases as follows: 

* Case 1: In case of pulse (t0 ≤ t ≤ Di1Tp), 

Qi1 is open, capacitor Ci transmits cell energy i + 1, 

Li is stored energy (as magnetic field) during this 

period. The currents are denoted in figure 3, the 

kinematic equation of the equivalent circuit is: 

 
Figure 3. The equivalent circuit in the case 1 

 

𝑉𝐵𝑖 = 𝐿𝑖1
𝑑𝑖𝐿𝑖1

𝑑𝑡
,     𝑖𝐿𝑖1 𝑡0 =  𝐼0 (2) 

𝑉𝐵𝑖+1
= −𝐿𝑖2

𝑑𝑖𝐿𝑖2

𝑑𝑡
+  

1

𝐶𝑖
 𝑖𝐿𝑖2𝑑𝑡
𝐷𝑖1𝑇𝑝
𝑡0

,   𝑖𝐿𝑖2 𝑡0 =  𝐼0

    (3) 

* Case 2: In case there is no pulse (Di1Tp< t 

≤ Tp), Qi1is locked, Di2 is through, the capacitor Ciis 

charged with energy from cell i, the energy stored 

on Li+1continues to be charged to cell i + 1. The 

currents are denoted as shown in Figure 4: 

 

 
Figure 4. Equivalent circuit in the case 2 

 

The kinematic equation of the equivalent 

circuit in this case is: 
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𝑉𝐵𝑖+1
= −𝐿𝑖2

𝑑𝑖𝐿𝑖2

𝑑𝑡
,       𝑖𝐿𝑖2 𝑡0 =  𝐼𝑝 (4) 

𝑉𝐵𝑖 = 𝐿𝑖1
𝑑𝑖𝐿𝑖1
𝑑𝑡

+  
1

𝐶𝑖
 𝑖𝐿𝑖2𝑑𝑡

𝑇𝑝

𝐷𝑖1𝑇𝑝

,   𝑖𝐿𝑖2 𝐷𝑖1𝑇𝑝 =  𝐼𝑝  

𝑉𝐶𝑖 𝐷𝑖1𝑇𝑝 =  𝑉𝐵𝑖 +  𝑉𝐵𝑖+1
  (5) 

According to the voltage balance principle 

and the charge balance principle [7], during a PWM 

cycle Tp the average currents 𝐼𝐿𝑖1 , 𝐼𝐿𝑖2through 𝐿𝑖1 ,𝐿𝑖2 

and the average voltage across the capacitor Ci by 

constant. The average current through 𝐿𝑖1 , 𝐿𝑖2during 

a PWM pulse period fed into Qi1 is determined as 

follows [8]: 

𝐼𝐿1 = 𝜑𝑖1𝐷𝑖1 =  
1

2

𝑉𝐵𝑖
𝑇𝑝𝐷𝑡1

2

𝐿𝑖1
   

𝐼𝐿2 = 𝜑𝑖2𝐷𝑖1 =  
1

2

𝑇𝑝𝑉𝐶𝑖
− 𝑉𝐵𝑖+1

𝐷𝑡1
2

𝐿𝑖2
 (6)  

We define the ratio 𝛽𝒊> 0 between two currents 

𝐼𝐿𝑖1 , 𝐼𝐿𝑖2  as follows: 

𝛽𝑖 =  

𝜑 𝑖2(𝐷𝑖1)

𝜑 𝑖1(𝐷𝑖1)
,   𝜑𝑖1 𝐷𝑖1  ≠  0

0               𝜑𝑖1(𝐷𝑖1) = 0 

  (7) 

Similarly, for the case where energy needs 

to be transferred from cell i+1 to cell i. Call the 

PWM period given to the Qi2 MOSFET as Tp, the 

pulse width as Di2. The average current 𝐼𝐿𝑖1 , 𝐼𝐿𝑖2  

through 𝐿𝑖1 ,𝐿𝑖2 is written as: 

𝐼𝐿𝑖1 = 𝜑𝑖1
′ 𝐷𝑖2 =  

1

2

𝑇𝑝𝑉𝐶𝑖
− 𝑉𝐵𝑖

𝐷𝑡2
2

𝐿𝑖2
   

𝐼𝐿𝑖2 = 𝜑𝑖2
′ 𝐷𝑖2 =  

1

2

𝑇𝑝𝑉𝐵𝑖+1
𝐷𝑡2

2

𝐿𝑖1
 (8) 

Similarly the current ratio 𝐼𝐿𝑖1 , 𝐼𝐿𝑖2  in this 

case is as follows: 

𝛽𝑖 =  

𝜑 𝑖1
′ (𝐷𝑖2)

𝜑 𝑖2
′ (𝐷𝑖2)

,   𝜑𝑖2
′ (𝐷𝑖2)  ≠  0

0               𝜑𝑖2
′ (𝐷𝑖2) = 0

  (9) 

So in general for both cases where energy 

is transferred from cell i to cell i + 1 and vice versa 

where energy is transferred from cell i + 1 to cell i, 

the average current through 𝐿𝑖1 , 𝐿𝑖2is written as: 

𝐼𝐿𝑖1 =   
𝜑𝑖1 𝐷𝑖2 cell i →  cell i +  1

𝜑𝑖1
′ (𝐷𝑖2)      cell i +  1 →  cell i

  

𝐼𝐿𝑖2 =   
𝜑𝑖2 𝐷𝑖2 cell i →  cell i +  1

𝜑𝑖2
′ (𝐷𝑖2)      cell i +  1 →  cell i

   

(10) 

For the Cuk circuit at a time, only one of 

the two MOSFETs is active, so we have the 

condition between the two Duty of the two 

MOSFETs is: 

𝐷𝑡1 𝑘 .𝐷𝑡2 𝑘 = 0  (11) 

Where: k is the sampling period of the 

control circuit and calculation. 

 

SoC balance model of multiple serial cells 

Assuming there are n cells connected in 

series, we have n - 1 cell equalizer for two adjacent 

cells designed as shown in Figure 5. 

 
Figure 5. Balanced circuit structure for n series 

LiB cells 

 

Let the equilibrium current of cell i, 1 < i < 

n is: 

𝐼𝑒𝑞𝑖 = 𝐼𝐿𝑖1 −  𝐼𝐿𝑖2    (12) 

Because a cell participates in two 

equalization circuits except the first and last cell. 

The balance current of cell 1 and cell n is: 

𝐼𝑒𝑞1
=  𝐼𝐿𝑖1  

𝐼𝑒𝑞𝑛 =  𝐼𝐿𝑛−1,2
   (13) 

Call the current through the i
th

 cell 𝐼𝐵𝑖 , the 

charge (discharge) current of all n cells connected in 

series is Is, we have: 

𝐼𝐵𝑖 = 𝐼𝑠 + 𝐼𝑒𝑞𝑖   (14) 

Assume that at sampling time k, or time 

kT, k = 0, 1, 2 → ∞ (for sampling period T, this 

sampling period must be larger and integer times Tp 

of PWM) of the cell balancing controller, the SoC 

values of all cells have been determined through the 

SoC estimation stage. Thus, the preliminary SoC 

value of the cells during the next sampling time k + 

1 can be determined through the integral in one 

sampling period of the cell current ratio and the cell 

capacity. Thus, the SoC value of cell i, 1 ≤ i ≤ n can 

be updated by the following formula: 

SoCi (k +1) = SoCi (k) - ∆SoCi(k) - ∆SoCs(k)  

     (15) 

Where ∆SoCi(k) is the amount of SoC 

variation of cell i caused by receiving or 

transmitting energy to its two adjacent cells (cell i -

1, i + 1), defined as: 

∆SoCi(k) = - ∆SoCit(k) - ∆SoCir(k)   (16) 
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With ∆SoCit(k), ∆SoCir(k) is the amount of 

SoC given and SoC received, respectively. The 

amount of SoC given and received by cell i, 1 ≤ i ≤ 

n is calculated as follows: 

∆SoCit(k) = 
𝐼𝐿 𝑖−1 ,2

 𝑘 𝑇

𝑄
 

∆SoCir(k) = 
𝐼𝐿𝑖1

 𝑘 𝑇

𝑄
  (17) 

For the first cell ∆SoC1t(k) = 0, for the last 

cell ∆SoCnr(k) = 0. ∆SoCs(k) is the amount of 

variation the SoC causes to the load (or charge) 

current through all n cell, since the Is line is the 

same for all cells, ∆SoCs(k) is the same for all cells. 

∆SoCs(k) = 
𝐼𝑠 𝑘 𝑇

𝑄
  (18) 

For n cells, the SoC update formula is 

generally defined as: 

Cell 1: SoC1(k+1) = SoC1(k) −
𝜑11(𝐷11 )𝑇

𝑄
−

 
𝜑11
′ (𝐷12 )𝑇

𝑄
−  

𝐼𝑠 𝑘𝑇 𝑇

𝑄
 

    (19) 

Cell j: 1 < j < n 

SoCj(k+1) = SoCj(k) + 
𝜑 𝑖2(𝐷𝑖1)𝑇

𝑄
−  

𝜑 𝑖1(𝐷𝑖1)𝑇

𝑄
+

𝜑 𝑖2
′ (𝐷𝑖2)𝑇

𝑄
−  

𝜑 𝑖1
′ (𝐷𝑖2)𝑇

𝑄
−  

𝐼𝑠 𝑘𝑇 𝑇

𝑄
 (20) 

Cell n: SoCn(k+1) = SoCn(k) +
𝜑 𝑛−1 ,1(𝐷 𝑛−1 ,1)𝑇

𝑄
−

 
𝜑 𝑛−1 ,1
′ (𝐷 𝑛−1 ,2)𝑇

𝑄
−  

𝐼𝑠 𝑘𝑇 𝑇

𝑄
 (21) 

SoC(k) ∈ 𝑅∗ =   𝑆𝑜𝐶1(𝑘) 𝑆𝑜𝐶2(𝑘)⋯ 𝑆𝑜𝐶𝑛 (𝑘) 𝑇 

u1(k) ∈ 𝑅𝑛−1 =   𝐷11 𝐷21⋯ 𝐷𝑛−1,1 𝑇 

    (22)    

u2(k) ∈ 𝑅𝑛−1 =   𝐷12 𝐷22⋯ 𝐷𝑛−1,2 𝑇 

Let the system matrices be: 

B1(k) ∈ 𝑅𝑛𝑥  𝑛−1  

−1 0 0
𝛽1 (𝑘) −1 0

0 𝛽2 (𝑘) −1
 ⋯         ⋯     ⋯
  0           0     0

⋯           0       
   ⋯               0       
   ⋯               0       
⋱          ⋯
⋯    𝛽𝑛−1(𝑘)

 

    (23) 

B2(k) ∈ 𝑅𝑛𝑥  𝑛−1 =

 
 
 
 
 
𝛽1
′ (𝑘) 0 0

1 𝛽2
′ (𝑘) 0

0 1 𝛽3
′ (𝑘)

 ⋯       ⋯        ⋯
0       0        0

⋯     0
⋯     0
⋯    0
⋱     ⋯
⋯      1

 
 
 
 
 

    (24) 

Equations (19) to (21) are models 

representing the SoC variation of n series cells, the 

SoCs of the cells depend on the Duty of the cell 

balancing circuits (n - 1 equalizer) and load current 

through the cell. To represent the relationship model 

between the SoC of cells and the Duty of the cell 

balancing circuits, we set the SoC variable vector 

and the input vectors as follows: 
f1 u1(k) ∈ 𝑅𝑛−1 =   𝑓11𝐷11 𝑓21𝐷21⋯ 𝑓𝑛−1,1𝐷𝑛−1,1 𝑇 

f2 u2(k) ∈ 𝑅𝑛−1 =   𝑓12
′ 𝐷12 𝑓22

′ 𝐷22⋯ 𝑓𝑛−1,2
′ 𝐷𝑛−1,2 

𝑇 

Is(k) ∈ 𝑅𝑛−1 =   𝐼𝑠 𝑘 𝑇 𝐼𝑠 𝑘 𝑇⋯ 𝐼𝑠 𝑘 𝑇 
𝑇  

    (25) 

The model of a cell-balanced system is 

generally written as follows: 

SoC(k +1) = SoC(k) + Q
-1

B1(kT) f1 u1(k) + Q
-

1
B2(kT) f2 u2(k) + Q

-1
Is(k)      (26) 

Looking at the model, we see that the SoC, 

the parts Q
-1

B1(k)f1u1(k), Q
-1

B2(k)f2u2(k)  are the 

amount of SoC transmitted to neighboring cells and 

the amount of SoC received from neighboring cells, 

respectively. Neighboring cell SoC of a cell at the 

next time will be equal to the current SoC plus the 

amount of SoC transferred from neighboring cells 

minus the amount of SoC transmitted to neighboring 

cells and the amount of SoC received/reduced when 

charge/discharge. 

Thus, from this model, we can adjust the 

terminals u1(k), u2(k) to adjust the process of 

transmitting and receiving energy of each cell in 

order to receive the cell's SoC at the next time. 

It should be noted that the current through 

the cells is limited by the operating characteristics of 

the cell, the current through the cell is equal to the 

sum of the balance current and the charge/discharge 

current, so the designs of the cell balancing circuit 

should be limited such that In the case of the 

maximum charge/discharge current, the current 

through the cell does not violate this condition. 

Therefore, the limit of the balanced currents needs 

to be set and the limits of u1(k), u2(k) also need to be 

considered in the control problem. 

This is a model describing the SoC 

relationship between time k and time k + 1, SoC at 

time k is taken from SoC estimation algorithm, SoC 

value at time k + 1 is used for calculation purposes 

only the control signals u1(k), u2(k) at time k, and 

the SoC at time k through this model will not be 

used for time k + 1, but will be taken from the SoC 

estimator. 

 

III. OPTIMAL CONTROL OF CELL 

BALANCE FOR LITHIUM-ION 

BATTERIES 

Setting up the balanced optimal 

control problem SoC 
The optimal control problem of cell 

balance is performed to ensure that n cells 

connected in series have relatively equal SoCs and 

allow a difference of an acceptable limit. At the 

same time, it is necessary to ensure that the cell 

current conditions are within the allowable limits in 

the normal operating conditions of the cells, and to 

ensure the duty limit of the PWMs sent to the 

MOSFETs of the cell balancing circuits. The 

constraints set in terms of limits in the optimal 

control problem are defined as follows: 
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The firstly, the SoC of all cells must be 

within operating limits, represented by the set Ω and 

defined: 

Ω =   𝑆𝑜𝐶𝑖 ∈ 𝑅 𝑆𝑜𝐶𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝑖 ≤ 𝑆𝑜𝐶𝑚𝑎𝑥 , 𝑖 =
1, 2,…, 𝑛   (27) 

In which: 𝑆𝑜𝐶𝑚𝑖𝑛 , 𝑆𝑜𝐶𝑚𝑎𝑥  are the SoCs at 

the lowest level and the highest level, respectively. 

Secondly, since the Cuk converter circuit is 

designed to operate in DICM mode, the balance 

current should not be greater than the maximum 

allowable balance current, the duty of the PWM 

control signal sent to the MOSFETs must satisfy the 

following requirements. binding as follows: 

𝐷𝑖1 ,𝐷𝑖2 ∈ ∅, 𝑖 = 1, 2,… ,𝑛 (28) 

In which: 

∅ =   
𝐷𝑖1 ∈ 𝑅,    0 ≤  𝐷𝑖1 ≤ 𝐷𝑚𝑎𝑥
𝐷𝑖2 ∈ 𝑅,    0 ≤  𝐷𝑖2 ≤ 𝐷𝑚𝑎𝑥

  (29) 

With Dmax being the maximum allowed 

duty of the PWM pulse. 

Thirdly, the current through the cells must 

be within the appropriate operating limits, which 

means: 

𝐼𝐵𝑐𝑚𝑎𝑥 ≤ 𝐼𝐵𝑖 ≤ 𝐼𝐵𝑑𝑚𝑎𝑥 , 𝑖 = 1, 2,… ,𝑛 

    (30) 

In which: 𝐼𝐵𝑐𝑚𝑎𝑥 , 𝐼𝐵𝑑𝑚𝑎𝑥  is the value of 

maximum charge current and maximum allowable 

discharge current of LiB (negative charge current 

and positive discharge current), respectively. 

The goal of the optimal control problem is 

to control the SoC balance for the cells so that the 

energy loss is minimal. To achieve this goal, it is 

necessary to control the SoC balance of all series 

cells so that the squared deviation of the SoC of the 

cells from the average SoC value of the cells in the 

LiBP is minimized. This goal is expressed by the 

following formula: 

𝑚𝑖𝑛  𝑆𝑜𝐶𝑖 − 𝑆𝑜𝐶
2𝑛

𝑖=1   (31)  

Where 𝑆𝑜𝐶 is the average SoC of serial 

cells, defined as: 

𝑆𝑜𝐶 =  
1

𝑛
 𝑆𝑜𝐶𝑖
𝑛
𝑗=1   (32) 

In order to ensure normal working 

conditions, the currents through the inductances in 

the balanced circuits are not too large, causing harm 

to the cells, so in the following target cell balance 

control problem related to n - 1 cell equalizer needs 

to be implemented: 

𝑚𝑖𝑛   𝐼𝐿𝑖1 − 𝐼𝐿𝑖2 
2𝑛−1

𝑖=1 =  𝑚𝑖𝑛   𝜑𝑖1(𝐷𝑖1) −𝑛−1
𝑖=1

− 𝜑𝑖2′(𝐷𝑖2)2   (33) 

Thus, the cell balancing problem for n cells 

needs to ensure the calculation of the Duty of the 

cell balancers so that the minimization conditions 

(31) and (33) are satisfied and the bound constraints 

are met. of working conditions (27), (28) (30) 

To implement this optimal control 

problem, we use the following objective function: 

J SoC(k), u1(k), u2(k) =  𝑝𝑖 𝑆𝑜𝐶𝑖 𝑘 + 1 −𝑛
𝑖=1

 𝑆𝑜𝐶 𝑘 + 1  2 +  𝑞𝑗  𝜑𝑖1 𝑢1 𝑘  −
𝑛−1
𝑗=1

𝜑𝑖2
′  𝑢2 𝑘   

2
         (34) 

Where: pi> 0, qj> 0, i = 1, 2,…, n, j = 1, 

2,…, n - 1 are the positive weights in the objective 

function, respectively. The objective function (34) 

can be written in quadratic form as follows: 

J SoC(k), u1(k), u2(k) = SoC(k+1) – Inx1𝑆𝑜𝐶(k+1) P 

SoC(k+1) – Inx1𝑆𝑜𝐶(k+1)
T
+ f1 (u1(k)) – f2 

u2(k)Qf1(u1(k)) –  f2 (u2(k))
T
 (35) 

Where: Inx1 is a 1- column vector, n - 1 row 

and has elements equal to 1, the weight matrices P, 

Q have the form: 

 

𝑃 ∈ 𝑅𝑛𝑥𝑛 =   

𝑝1 0 0
0 𝑝2 ⋯
⋮ ⋮ ⋱

0
0
⋮

0   0  ⋯ 𝑝𝑛

 ,  

𝑄 ∈ 𝑅 𝑛𝑥1 𝑥 𝑛−1 =   

𝑝1 0 0
0 𝑝2 ⋯
⋮ ⋮ ⋱

0
0
⋮

0   0  ⋯ 𝑝𝑛

  

     (36) 

The solution of the optimization problem is 

to find the control signal u1(k), u2(k) and Duty of the 

PWM pulse leading to n - 1 cell equalizer, by 

solving the following optimization problem: 

J SoC(k), u1(k), u2(k) → min  (37) 

With the SoC kinematics of the cells being: 

SoC(k +1) = SoC(k) + Q
-1

B1(kT) f1 u1(k)  + Q
-

1
B2(kT) f2 u2(k) + Q

-1
Is(k)    (38) 

Satisfy the following conditions: 

Imin≤ –B1(kT) f1 u1(k) – B2(kT) f2 u2(k) + Is(k) ≤ Imax

    (39)  

SoC (k+1) ∈ Ω   (40)  

u1(k) x u2(k) = 0   (41)  

u1(k), u2(k) ∈  ∅   (42)  

With: 

𝐼𝑚𝑖𝑛 =  𝐼𝐵𝑐𝑚𝑎𝑥 ⋯ 𝐼𝐵𝑐𝑚𝑎𝑥  
𝑇 ∈  𝑅𝑛   

𝐼𝑚𝑎𝑥 =  𝐼𝐵𝑑𝑚𝑎𝑥 ⋯ 𝐼𝐵𝑑𝑚𝑎𝑥  
𝑇 ∈  𝑅𝑛  

    (43) 

And SoC(k) is the SoC estimate of the cells 

at time k. 

Algorithm to solve the cell-balanced optimal 

control problem 
See the cell-balanced optimal control 

problem to determine the duties that lead to the 

control of MOSFETs in n - 1 cell-balanced circuits 

with the objective function (37) satisfying the 

unbalanced nonlinear constraints (39) and (40), 

balanced nonlinearity (41) and satisfying the limit 

(42) of the Duty. In general, this is an optimal 

control problem with balanced and unbalanced 
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nonlinear constraints. Considered in one sampling 

cycle of the cell-balanced controller, this 

optimization problem is considered as a static 

nonlinear optimal control problem, because during 

this computation period the SoCs of the cells are 

considered to be zero. change, because the kinetics 

of the battery is slow. The solution of this 

optimization problem depends on many factors such 

as: frequency of control pulses fed into cell-

balanced controllers fp = 1/ Tpperiod T, limits Փ, Ω, 

currents charge/discharge currents allowed through 

cells 𝐼𝐵𝑐𝑚𝑎𝑥 , 𝐼𝐵𝑑𝑚𝑎𝑥 ,charge/discharge current Is and 

number of cells in series n. On the other hand, this is 

a nonlinear optimization problem, so the 

convergence problem of the algorithm also depends 

a lot on the starting point of finding the solution. 

There are many methods that can be 

applied to solve the cell balancing optimal control 

problem [9] – [18]: Interior-Point method, Trust-

Region-Reflectivemethod, Active-Set method, 

Sequential Quadratic Programming (SQP) method, 

SQP-Lagary method. 

The author applies the SQP method to the 

cell balance optimal control problem. Algorithm to 

solve the nonlinear optimization problem SQP can 

be found in the documents [6], [9]. Express the 

balanced optimization problem for n cells connected 

in series in standard form as follows: 

(u) → min   (44) 

Satisfy the following conditions: 

c (u) ≤  0 

ceq (u) = 0 

A u ≤ b     

Aeq u = Beq 

umin≤ u ≤ umax   (45) 

With: u is the solution vector of the 

optimization problem; b and Beq are vectors, A and 

Aeq are the matrices of the two linearly balanced 

and unbalanced constraints; image c(u) and ceq(u) 

are functions, the output of the function is vectors; 

J(u) is a function whose head is a scalar, J(u), c(u), 

ceq(u) are nonlinear functions; umin, umaxare the lower 

and upper limit vectors of the optimal solution. 

Specific representations of the quantities in 

(44) and (45) are as follows: 

𝑢 =   
𝑢1(𝑘)

𝑢2(𝑘)
 

2 𝑛−1 𝑥1

   

𝑢1 𝑘 =   

𝑢11(𝑘)

𝑢21(𝑘)
⋮

𝑢𝑛−1,1(𝑘)

 =   

𝐷11(𝑘)

𝐷21(𝑘)
⋮

𝐷𝑛−1,1(𝑘)

 ,    

𝑢2 𝑘 =   

𝑢21(𝑘)

𝑢22(𝑘)
⋮

𝑢𝑛−1,2(𝑘)

 =   

𝐷21(𝑘)

𝐷22(𝑘)
⋮

𝐷𝑛−1,2(𝑘)

  

     (46) 

J(u) = SoC(k+1) – Inx1𝑆𝑜𝐶(k+1) P SoC(k+1) – 

Inx1𝑆𝑜𝐶(k+1)
T
 + f1(u1(k)) – f2 u2(k)Qf1(u1(k)) –   

f2 u2(k))
T
   (47) 

With SoC(k + 1) calculated according to 

(38). 

The matrices and vectors A, b, Aeq, Beqare 

zero because there are no balanced and imbalanced 

linear constraints. 

Unbalanced nonlinear constraints: 

 

 
𝑐 𝑢 =  

=

 
 
 
 
−𝐵1 𝑘𝑇 𝑓1𝑢1 𝑘  − 𝐵2 𝑘𝑇 𝑓2𝑢2 𝑘 + 𝐼𝑠 𝑘 − 𝐼𝑚𝑎𝑥
𝐼𝑚𝑖𝑛 + 𝐵1 𝑘𝑇 𝑓1𝑢1 𝑘 +  𝐵2 𝑘𝑇 𝑓2𝑢2 𝑘 + 𝐼𝑠 𝑘 

𝑆𝑜𝐶 𝑘 + 1 − 𝑆𝑜𝐶𝑚𝑎𝑥 𝐼𝑛𝑥1

𝑆𝑜𝐶𝑚𝑖𝑛 𝐼𝑛𝑥1 −  𝑆𝑜𝐶 𝑘 + 1  
 
 
 

 

≤ 04𝑛𝑥1    (48) 

Balanced nonlinear constraints: 

𝑐𝑒𝑞  𝑢 =  

 
 
 
 
𝑢11 𝑘 𝑢𝑛−1,2 𝑘 

𝑢21 𝑘 𝑢𝑛 ,2 𝑘 
⋯

𝑢𝑛−1,1 𝑘 𝑢2𝑛−2,2 𝑘  
 
 
 

=  0 𝑛−1 𝑥1(49) 

Limits: 

umin = 0n-1,1 umax = 𝐷𝑚𝑎𝑥  

𝐷𝑚𝑎𝑥
𝐷𝑚𝑎𝑥
⋮

𝐷𝑚𝑎𝑥

 

𝑛−1,1

 

    (50) 

The principle of the SQP algorithm to solve 

the cell balance control optimization problem (44) 

with constraints and limits (45) is described as 

follows [6]: 

First, we approximate the optimization 

problem (44) with constraints and limits (45) based 

on the approximation transform of the quadratic 

Lagrange function: 

𝐿 𝑢, 𝜆 = 𝐽 𝑢 +   𝜆𝑎𝑔𝑎 (𝑢)𝑛
𝑎=1  (51) 

into a quadratic programming subproblem: 

min𝑑∈𝑅𝑛
1

2
𝑑𝑇𝐻𝑖𝑑 +  ∇𝐽(𝑢 𝑖 𝑇)𝑑   

∇𝑔𝑗  𝑢 𝑖 
𝑇 𝑑 + 𝑔𝑗  𝑢 𝑖  = 0,

𝑗
= 1,2,… ,𝑛∇𝑔𝑗  𝑢 𝑖 

𝑇 𝑑

+ 𝑔𝑗  𝑢 𝑖  ≤ 0,

𝑗 = 1,2,… ,𝑛 

(52)  

Where: i is the sequence number of steps in 

the solution, 𝜆𝑎 , 𝑎 =  1, 2,… , 2n − 2is the Lagrange 

multiplication operator, Hi is the approximate 

positive definite matrix of the Hessian matrix of the 
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Lagrange function at the ith iteration, g(u(i)) is the 

function of the solution at the i iteration defined in 

the Lagrange function (25), d is the search direction 

vector. 

The quadratic programming problem (26) 

can be solved using any quadratic programming 

algorithm. The solution of the problem at the (i + 

1)
th
 iteration is usually of the form: 

u(i +1) = u(i) + αidi  (53) 

Where αi is the step length parameter 

determined by the search procedure so that the value 

of the objective function decreases accordingly. 

To solve the quadratic programming 

problem (52) using the SQP technique, the main 

steps are as follows: 

1) Update the Hessian matrix 

2) Solving the problem of dimensional 

planning 

3) Search and determine value 

 * Step 1: Update matrix Hi 

At each iteration, the matrix Hi is updated 

using the BFGS method: 

𝐻𝑖+1 =  𝐻𝑖 +  
𝑞𝑖𝑞𝑖

𝑇

𝑞𝑖
𝑇𝑠𝑖

−  
𝐻𝑖𝑠𝑖𝑠𝑖

𝑇𝐻𝑖
𝑇

𝑠𝑖
𝑇𝐻𝑖𝑠𝑖

 (54) 

With: 

si = u(i+1) – u(i) 

𝑞1 =   ∇ 𝐽 𝑢 𝑖 + 1 +   𝜆𝑎𝑔𝑎 𝑢 𝑖 + 1  𝑛
𝑎=1  −

  ∇ 𝐽 𝑢 𝑖 +  𝜆𝑎𝑔𝑎 𝑢 𝑖  
𝑛
𝑎=1   (55) 

During the calculation, Hi must be positive. 

To ensure that the matrix Hi is positive definite, 

𝑞𝑖
𝑇𝑠𝑖  must be positive definite and the matrix H must 

be initialized with a positive definite matrix. When 

𝑞𝑖
𝑇𝑠𝑖 is positively undefined then qi must be changed 

element-by-element such that 𝑞𝑖
𝑇𝑠𝑖> 0. If after this 

process 𝑞𝑖
𝑇𝑠𝑖  is still positively undefined then 

change qi by adding into a vector v multiplied by a 

scalar ω as follows: 

𝑞𝑖 =  𝑞𝑖 + 𝜔𝑣   (56) 

In which: 

𝑣𝑎 =  
= ∇𝑔𝑎 𝑢 𝑖 + 1  𝑔𝑎 𝑢 𝑖 + 1  − ∇𝑔𝑎 𝑢 𝑖  𝑔𝑎 𝑢 𝑖  

𝑘𝑖 (𝑞𝑖)𝑛 .𝑤 < 0 𝑣à (𝑞𝑖)𝑛 . (𝑠𝑖)𝑛 < 0,𝑎 = 1, 2,… , 2𝑛 − 2
= 0           𝑂𝑡𝑒𝑟 𝑐𝑎𝑠𝑒                                                                

  

    (57) 

And increase ω slowly until 𝑞𝑖
𝑇𝑠𝑖> 0. 

* Step 2: Solve the square planning 

problem 

At each iteration, solve the following 

quadratic programming problem: 

min 𝑑∈𝑅𝑛 𝑞 𝑑 = 
1

2
𝑑𝑇𝐻𝑖𝑑 + 𝑐𝑇𝑑   

Ajd = bj,   j = 1, 2,…, ne  (58) 

Ajd ≤ bj,   j = ne,…, n 

The process of solving the square plan is 

divided into two cases. Case 1 is to compute a 

possible point, case 2 is to generate a sequence of 

iterations of possible points that converge on the 

solution of the problem. Let 𝐴𝑖  be the “active set”, 

which is an estimate of the positive constraints at the 

solution of the problem. 𝐴𝑖 is updated at each 

iteration i, 𝐴𝑖 is used to determine the possible search 

direction di, denote the possible search direction di 

to distinguish it from the search direction di in the 

main iteration. The search direction di is calculated 

and minimizes the objective function while ensuring 

positive constraints. The possible space for the 

divisible search direction is determined from the 

matrix Zi whose columns are orthogonal to the 

positive set 𝐴𝑖  (that is, 𝐴𝑖𝑍𝑖 = 0) the matrix Zi is 

formed from m - 1 column of the QR analysis of the 

𝐴𝑖
𝑇
matrix, where l is the number of positive 

constraints and l < m as follows: 

𝑍𝑘 = 𝑄 : , 𝑙 + 1:𝑚   (59) 

In which: 

𝑄𝑇𝐴𝑖
𝑇

=  
𝑅
0
    (60) 

The search direction is defined as: 

di = Zip    (61) 

The quadratic function q is a function of 

the vector p of the form: 

𝑞 𝑝 =  
1

2
𝑝𝑇𝐻𝑖𝑍𝑖

𝑇𝑝 +  𝑐𝑇𝑍𝑘𝑝 (62) 

The partial derivative with respect to p we 

have: 

∇𝑞 𝑝 =  𝑍𝑖
𝑇𝐻𝑖𝑍𝑖𝑝 +  𝑍𝑖

𝑇𝑐  (63) 

Where: ∇q(p) is considered as the Gradient 

of the quadratic function by the gradient projected 

onto the subspace defined by Zi. The component 

𝑍𝑖
𝑇𝐻𝑖𝑍𝑖  is called the projection Hessian matrix. 

Assuming that the matrix Zi is positively defined, 

then the minimum of the function q(p) in the 

subspace Zi is determined when ∇q(p)=0, which is 

the solution of the following linear equation: 

𝑍𝑖
𝑇𝐻𝑖𝑍𝑖𝑝 =  −𝑍𝑖

𝑇𝑐  (64) 

So the corresponding optimal solution is: 

ui+1(k) = ui(k) + α 𝑑 𝑖 , 𝑑 𝑖  = Zip  (65) 

* Step 3: Search and determine the value 

The solution of the quadratic programming 

problem generates the vector di, which is used to 

establish a new calculation step: 

ui+1(k) = ui(k) + α 𝑑 𝑖 , 𝑑 𝑖  = Zip  (66) 

Where: The step length parameter αi is 

determined to effectively reduce the value function. 

The value function is defined as follows: 

𝜓 𝑢 =
𝐽 𝑢 +

  𝑟𝑗𝑔𝑗  𝑢 + + 𝑟𝑗 .𝑚𝑎𝑥 0,𝑔𝑖(𝑢) 𝑛
𝑗=𝑚𝑒+1

𝑚𝑒
𝑗=1

 (67) 

𝑟𝑗 =  𝑟𝑖+1 = max{𝜆𝑗 ,
(𝑟𝑖)𝑗+ 𝜆𝑗

2
}, j = 1, 2,…, n 

    (68) 
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Select the starting value of the optimal 

problem solving process 
The nonlinear programming optimization 

problem to determine different Duty leads to n - 1 

cell equalizer at each control cycle. The initial 

starting point of the optimization problem plays an 

important role in the process of finding the optimal 

Duty solution and completing it in the shortest 

possible time in a control cycle. We know, based on 

the SoC of each cell, we can preliminarily determine 

the starting Duty set in the direction of satisfying the 

constraints and limitations. To adjust the adaptive 

starting value, the author uses the following 

algorithm: 

for  j = 1 : n-1 

if  𝑆𝑜𝐶0 𝑗 −   𝑆𝑜𝐶0 𝑗 + 1    = 0 

 u0(j) = 0; u0(j + (n-1)) = 0 

else 

 if 𝑆𝑜𝐶0 𝑗 >  𝑆𝑜𝐶0 𝑗 + 1  
     u0(j) = μ. Dmax ; u0(j + (n-1)) = 0 

 else 

end 

end 

end 
Where: μ is the fitness coefficient 

determined as follows: 

𝜇 =  
𝐽𝑘𝑢(𝑘)

𝐽1(𝑢 1 − 𝐽𝑓
   (69) 

With: J1, Jf, Jkare the objective function 

value at the time of the first calculation, desired 

objective function value when cell balancing is 

stopped, and objective function value at the current 

computation time k. 

Simulation results for LiB cell of Samsung 

battery type ICR18650-22P 
Cell parameters: 

 Q = 2200 Ma; Umin = 2,6 V; Umax = 4,2 V 

The parameters of the equalizer circuit: 

 L = 0,1 mH; C = 470 𝜇𝐹; T = 1s 

freq = 10kHz; Tp = 1/ freq 

Binding parameters: 

 SoClow = 5; SoChigh = 95 

𝐼𝑐𝑚𝑎𝑥  = - 0,5A; 𝐼𝑑𝑚𝑎𝑥  = 1,5 A 

The relationship between SoC and OCV cell 

terminal voltage is assumed to be linear with the 

equation: 

VB = [(4,2 – 2,6)*SoC0/ 100 + 2,6 

Simulation of multiple cells in series of a 

Samsung battery type ICR18650-22P 

In this case perform balanced optimal 

control simulation for 11 cells in series, current Is = 

0 A. In the general case, equalization can be 

performed for n cells. The initial SoC of the cells is 

random with specific values as shown in Table 1. 

Table 1. Original SoC of 11 serial cells 

 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9 Cell 10 Cell 11 

SoC0 (%) 79,29 18,91 48,97 44,78 64,62 70,93 75,02 27,82 67,75 65,49 16,48 

 

 
Figure 6. 11-cell SoC balancing at optimal balance control with random SoC (Is = 0A) 
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Figure 7. Objective function value J and number of iterations with random SoC (1 cell, Is = 0.1 A) 

 

 
Figure 8. Duty of PWM signal balanced circuit with random SoC(11 cells, Is = 0 A) 
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Comment:The optimal control results of 

SoC balance for 11 Cells in series are shown in 

Figure 6 to 8. In the above cases, the optimal control 

of SoC balance is performed between two adjacent 

cells according to the rule that the cell with the 

higher SoC will transfer energy to the cell with the 

lower until the SoC of all cells is balanced. equal. 

The power transfer between two adjacent cells is 

accomplished through the optimal duty control of 

the two PWM control signals for the two MOSFETs 

in each balanced circuit. 

 

IV. CONCLUDE 
The content of the article implements the 

problem of optimal control of SoC balance for serial 

LiB cells based on active cell balancing technique. 

The article has shown the efficiency of cell 

balancing methods, thereby selecting the appropriate 

cell balancing method. Build SoC balance model for 

serial cells using bidirectional Cuk transform based 

on active balancing technique. Set up the cell-

balanced optimal control problem considering the 

balanced and unbalanced nonlinear constraints, 

using the SQP method to solve the nonlinear 

optimization problem. 

The simulation results for Samsung LiB 

cells of type ICR18650-22P with equalization 

circuits using bidirectional Cuk transform show that 

the time to perform cell balancing in the cases is 

quite short, the convergence speed of the objective 

function fast with small number of control 

iterations. 
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